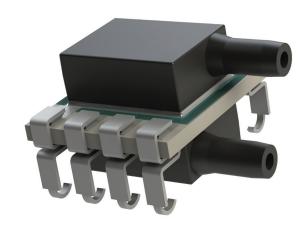


LP Series - Digital


LP Series - Digital is a surface mountable pressure sensor package with a compensated digital output suitable for **ultra-low pressure sensing applications**.

COMPANY: Merit Sensor is a leader in piezoresistive pressure sensing and partners with clients to create high performing solutions for a variety of applications and industries.

SENTIUM: Merit Sensor products incorporate a proprietary Sentium® technology developed to provide superior stability.

TECHNOLOGY: Merit Sensor utilizes a piezoresistive Wheatstone bridge in a design that anodically bonds glass to a chemically etched silicon diaphragm. All products are RoHS compliant.

CAPABILITIES: Merit Sensor designs, engineers, fabricates, dices, assembles, tests, and sells die and packaged products from a state-of-the-art facility near Salt Lake City, Utah.

FEATURES

Pressure 0.04 to 15 psi (2.5 mbar to 1 bar; 250 Pa to

Range 100 kPa; 1 to 415 in H_2O)

Output Digital I²C

Type Gage, Differential and Absolute

Media Clean, Dry Air and Non-corrosive Gases

Packaging Tape and Reel

Customization Supply Voltage, Temperature Calibration Range,

Output Range, Accuracy Specification,

Update Rate, etc

BENEFITS

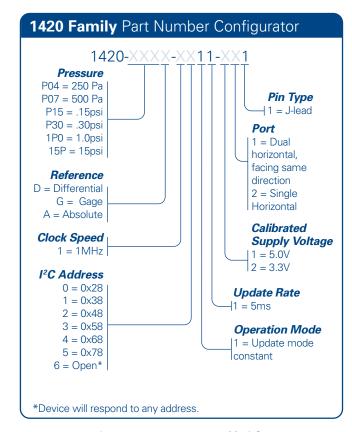
Performance Enjoy best-in-class performance due to Merit's

proprietary Sentium technology

Cost Save money over time with high-performing die

Security Feel confident doing business with an experienced

company backed by a solid parent company

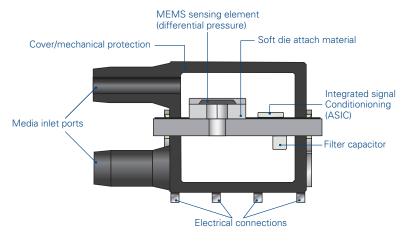

(NASDAQ: MMSI)

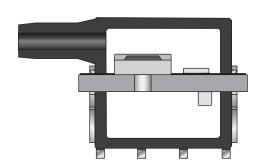
Speed Get to market quickly with creative and

flexible solutions

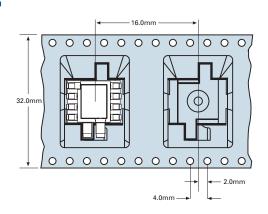
Service Experience prompt, personal and

professional support

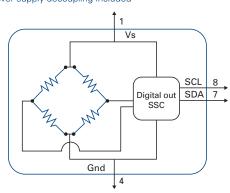



SPECIFICATIONS

Parameter	Minimum	Typical	Maximum	Units	Notes				
Electrical									
Supply Voltage (Vs)	4.5	5	5.5	V	Depending	Depending on calibrated supply voltage			
Supply Voltage (Vs)	3.0	3.3	3.6	V	Depending on calibrated supply voltage				
Supply Current	1.2	2	3.5	mA	(1)				
Operating Temperature	-40		85	°C					
Storage Temperature	-55		100	°C		Notes: (1) @5V input voltage,			
Performance	(2) Over 0°C to 60°C								
Effective ADC Resolution		13		Bits		(3) Applicable if Vs = ±5% of the calibrated Vs			
Pressure Accuracy	-1.5		1.5	%FS	(2) (3)	(4) Full scale pressure			
Long-Term Stability	-0.5		0.5	%FS					
Startup Time		15		ms					
Digital Update Time	2	5	125	ms					
Proof Pressure	5X				(4)				
Burst Pressure	10X								
Transfer Function Formula			Where						
$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$			Pcounts = P	P_{Min} = Minimum Pressure P_{Max} = Maximum Pressure					
Media Compatibility									
For Use With Non-corrosive Dry Solder temperature: max 250 °C		nax	Max = 1	6384 = 14 Bits					

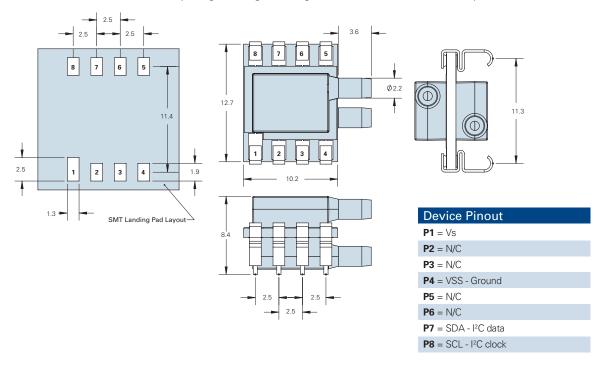

CROSS SECTION FOR DIFFERENTIAL AND GAGE

CROSS SECTION FOR ABSOLUTE



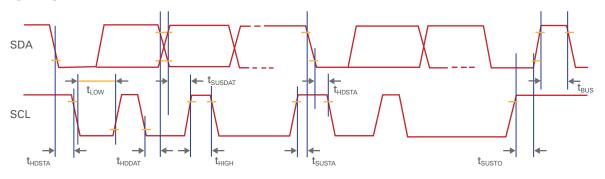
PACKAGING

ELECTRICAL


Note: Power supply decoupling included

DIMENSIONS FOR STANDARD OPTIONS (in millimeters)

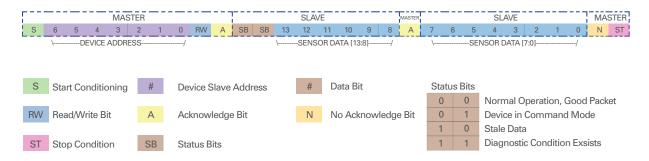
Dimensions for reference only. Engineering drawings (with tolerance) available upon order.



I²C PARAMETERS *

Parameter	Symbol	Min	Тур	Max	Units
SCL clock frequency	fscL	-		100	kHz
Start condition hold time relative to SCL edge	THDSTA	0.1			μs
Minimum SCL clock low width ¹	tLOW	0.6			μs
Minimum SCL clock high width ¹	tніgн	0.6			μs
Start condition setup time relative to SCL edge	t susta	0.1			μs
Data hold time on SDA relative to SCL edge	T HDDAT	0.0			μs
Data setup time on SDA relative to SCL edge	t SUDAT	0.1			μs
Stop condition setup time on SCL	tsusto	0.1			μs
Bus free time between stop condition and start condition	tBUS	2			μs

¹Combined low and high widths must equal or exceed minimum SCLK period.


I²C TIMING DIAGRAM*

MERIT SENSOR 1420 I²C COMMUNICATION

Communications to the 1420 is read only. To read the pressure counts, the master performs a read request by asserting a start condition, sending the 7 bit address of the part (If the part has an open address, 7 bits of anything is acceptable), and sets the read/write bit. The master then waits for an acknowledgment. The acknowledgment is sent by the pressure sensor along with 2 bits of status and bits 13:8 of the pressure counts, the master acknowledges the first 8 bits, and the pressure sensor sends the remaining 8 bits of data. The Master then does not acknowledge and sends a stop condition signaling the end of the transaction.

^{*}Used by permission, IDT

TRANSFER FUNCTION EXAMPLES

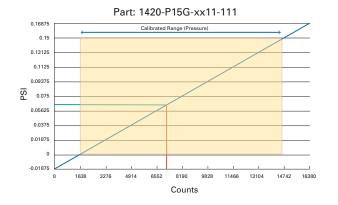
Example 1: 0.15 PSI Gage

Part: 1420-P15G-xx11-111

Pmin =0.0 PSI

 $P_{\text{max}} = 0.15 PSI$

Pcounts = 7215


Max = 16384

$$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{Psi} = (0.15 - 0.0) \cdot \left(\frac{7215 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + 0$$

$$P_{Psi} = (0.15 - 0.0) \cdot \left(\frac{7215 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + 0$$

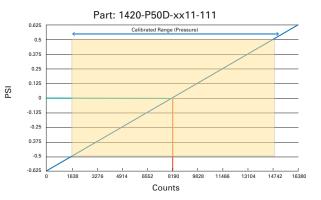
 $P_{Psi} = .0638 \ Psi$

Example 2: -.5 to .5 PSI Differential

Part: 1420-P50D-xx11-111

 $P_{\text{min}} = -0.5 PSI$

 $P_{\text{max}} = 0.5 PSI$


Pcounts =8192

$$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{Psi} = \left(0.5 - \left(-0.5\right)\right) \cdot \left(\frac{8192 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + \left(-0.5\right)$$

 $P_{Psi} = 0.0 Psi$

